16,944 research outputs found

    Discovery of Long-Lived Shape Isomeric States which Decay by Strongly Retarded High-Energy Particle Radioactivity

    Full text link
    The reaction 28Si + 181Ta has been studied at E(Lab) = 125 and 135 MeV. Coincidences between high energy particles and various X- and gamma-rays from abnormally long-lived states were observed. e.g. 7.8 - 8.6 MeV alpha-particles with gamma-rays of a superdeformed band, 5.1 - 5.5 MeV alpha-particles with X- and gamma-rays of W, Re, and Pt, and 3.88 MeV particles (interpreted as protons) with 185.8 keV gamma-rays. The data are interpreted in terms of the production of long-lived (t(1/2) of several months) high spin isomeric states in the second well of the potential in the parent nuclei, which decay to the normal states in the daughters, and in the third well of the potential, which decay to the second well.Comment: 25 pages including 11 figures and 3 table

    Singlino dominated LSP as CDM candidate in supersymmetric models with an extra U(1)

    Get PDF
    We consider a singlino dominated neutralino in supersymmetric models with an extra U(1). In case both the μ\mu term and also the Z′Z^\prime mass are generated by the vacuum expectation value of the scalar component of the same singlet chiral superfield, generically the lightest neutralino is not expected to be dominated by the singlino. However, if the gaugino corresponding to the extra U(1) is sufficiently heavy, the lightest neutralino can be dominated by the singlino and still satisfy the constraints resulting from the Z′Z^\prime phenomenology. We assume a supersymmetry breaking scenario in which the extra U(1) gaugino can be much heavier than other gauginos. In that framework we show that the singlino dominated lightest neutralino may be a good candidate for dark matter in a parameter space where various phenomenological constraints are satisfied.Comment: 25 pages, 6 figures, title is changed, introduction is extended, sec.2 is moved to appendix, some references are added, published versio

    v4: A small, but sensitive observable for heavy ion collisions

    Full text link
    Higher order Fourier coefficients of the azimuthally dependent single particle spectra resulting from noncentral heavy ion collisions are investigated. For intermediate to large transverse momenta, these anisotropies are expected to become as large as 5 %, and should be clearly measurable. The physics content of these observables is discussed from two different extreme but complementary viewpoints, hydrodynamics and the geometric limit with extreme energy loss.Comment: as published: typos corrected, Fig. 3 slightly improved in numerics and presentatio

    The Abundance of Kaluza-Klein Dark Matter with Coannihilation

    Full text link
    In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level one KK particles are within five percent of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.Comment: 38 pages, 4 figure

    A Note on Gravitational Baryogenesis

    Full text link
    The coupling between Ricci scalar curvature and the baryon number current dynamically breaks CPT in an expanding universe and leads to baryon asymmetry. We study the effect of time dependence of equation of state parameter of the FRW universe on this asymmetry.Comment: 10 pages, accepted for publication in Physical Review

    Self-intersecting marginally outer trapped surfaces

    No full text
    We have shown previously that a merger of marginally outer trapped surfaces (MOTSs) occurs in a binary black hole merger and that there is a continuous sequence of MOTSs which connects the initial two black holes to the final one. In this paper, we confirm this scenario numerically and we detail further improvements in the numerical methods for locating MOTSs. With these improvements, we confirm the merger scenario and demonstrate the existence of self-intersecting MOTSs formed in the immediate aftermath of the merger. These results will allow us to track physical quantities across the non-linear merger process and to potentially infer properties of the merger from gravitational wave observations

    Scaling of v2v_2 in heavy ion collisions

    Full text link
    We interpret the scaling of the corrected elliptic flow parameter w.r.t. the corrected multiplicity, observed to hold in heavy ion collisions for a wide variety of energies and system sizes. We use dimensional analysis and power-counting arguments to place constraints on the changes of initial conditions in systems with different center of mass energy s\sqrt{s}. Specifically, we show that a large class of changes in the (initial) equation of state, mean free path, and longitudinal geometry over the observed s\sqrt{s} are likely to spoil the scaling in v2v_2 observed experimentally. We therefore argue that the system produced at most Super Proton Synchrotron (SPS) and Relativistic Heavy Ion Collider (RHIC) energies is fundamentally the same as far as the soft and approximately thermalized degrees of freedom are considered. The ``sQGP'' (Strongly interacting Quark-Gluon Plasma) phase, if it is there, is therefore not exclusive to RHIC. We suggest, as a goal for further low-energy heavy ion experiments, to search for a ``transition'' s\sqrt{s} where the observed scaling breaks.Comment: Accepted for publication by Phys. Rev. C Based on presentation in mini-symposium on QGP collective properties, Frankfurt. Discussion expanded, results adde

    Cosmological constraints on thermal relic axions and axion-like particles

    Full text link
    Cosmological precision data can be used to set very strict constraints on Axions and Axion-like particles (ALPs) produced thermally in the big bang. We briefly review the known bounds and propose two new constraints for Axions and ALPs decaying in the early universe, based upon the concomitant dilution of baryon and neutrino densities, using WMAP7 and other cosmological data.Comment: 4 pages, 4 figures. To appear in the proceedings of 7th Patras Workshop on Axions, WIMPs and WISPs, Mykonos, Greece, 26 June - 1 July 2011 and of TAUP 2011, Munich, Germany, 5 - 9 September 201
    • …
    corecore